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Abstract. We generalize Iskovskih’s theorem about surfaces without irregular-
ity and bigenus from the smooth case to regular surfaces over arbitrary fields, with
special focus on the case of imperfect fields. This includes surfaces that are geo-
metrically non-normal or geometrically non-reduced. Here the usual approach of
Galois descent breaks down, and one relies entirely on the scheme theory over the
ground field. Moreover, the degrees of closed points can be larger than expected,
and certain curves might have purely inseparable constant field extension. To
deal with the latter we establish a general theory for inseparable pencils, which
is of independent interest. A crucial case not present in the classical proof for
Iskovskih’s theorem leads to non-normal quartic surfaces that are singular along
a twisted cubic, or more exotic space curves of degree three.
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Introduction

A cornerstone in the Enriques Classification of algebraic surfaces is Castelnuovo’s
Rationality Criterion: A smooth surface S over an algebraically closed ground field
k is birational to P2 if and only if h1(OS) = 0 and h0(ω⊗2

S ) = 0. Note that H1(S,OS)
is the Lie algebra for the Picard scheme PicS/k, whose dimension h1(OS) is classically

2010 Mathematics Subject Classification. 14G17, 14J26, 14H45, 14J17, 14H60.
1



THE ISKOVSKIH THEOREM 2

called the irregularity. The invariants h0(ω⊗n) stemming from the dualizing sheaf
ωS = det(Ω1

S/k) are the plurigenera, and h0(ω⊗2
S ) might be called bigenus.

The above geometric statement can be seen as a consequence of Iskovskih’s The-
orem [24], which is of arithmetic nature: Let S be a minimal smooth surface with
h1(OS) = h2(ω⊗2

S ) = 0, over an arbitrary ground field k. Then S is isomorphic to
the projective plane or a quadric surface, or there is a fibration where the base and
the generic fiber are Brauer–Severi curves, or the dualizing sheaf ωS generates the
Picard group Pic(S). This builds on previous work of Manin [32] over perfect fields
k.
The goal of this paper is to generalize Iskovskih’s Theorem, to allow minimal reg-

ular surface over arbitrary ground fields, with special focus on the case of imperfect
ground fields, similar in style to the investigations in [15]. Note that this includes
surfaces that are geometrically non-normal or even geometrically non-reduced. Our
main result is:

Theorem A. (see Thm. 3.1) Let X be a minimal regular surface over an arbitrary
field F , with numerical invariants h0(OX) = 1 and h1(OX) = h0(ω⊗2

X ) = 0. Then
one of the following holds:

(i) The surface X is isomorphic to the projective plane P2, or isomorphic to a
quadric surface in P3.

(ii) There is a morphism f : X → B with f∗(OX) = OB such that the base and
the generic fibers are regular genus-zero curves.

(iii) The dualizing sheaf ωX generates the Picard group Pic(X).

In the first case of this trichotomy, the surface X can be expressed in terms of a
single equation. In the second case, the geometry is reduced to dimension one. In
marked contrast, it is very difficult to say more about the third case (compare [8],
Section 4).

In recent years, regular del Pezzo surface over imperfect have received increased
attention, for their own sake, and because they appear as generic fibers in the outputs
of the Minimal Model Program for algebraic varieties in characteristic p > 0, for
example in the work of Bernasconi, Ji, Maddock, Martin, Patakfalvi, Tanaka, and
ourselves ([41], [31] [46] [15], [6], [47], [26], [37], [48], [7], [5]).

Kollár, Smith and Corti gave a highly readable presentation of Iskovskih’s argu-
ments ([28], Chapter 3), and we follow their line of reasoning: Assuming that the
dualizing shed does not generate the Picard group, one produces a curve C ⊂ X
with h1(OC) = 0 and C2 ≥ 0, such that C and all linearly equivalent curves are
integral. Now two major new issues arise : The field of constants E = H0(C,OC)
could be a purely inseparable extension, and the self-intersection number C2 ≥ 0 is
potentially larger that in the classical situation. The first crucial step is to establish
h0(OC) = 1. Having this, we infer C2 | 4 or C2 = 0, and the cases 0 ≤ C2 ≤ 3 than
correspond to (i)–(iii) in Theorem A. The second crucial step is to establish that
C2 = 4 actually does not appear.

To tackle the problem of constant field extensions, we develop a general theory of
purely inseparable pencils. Suppose X is a proper normal scheme with h0(OX) = 1.
Let D0, D1 be two effective Cartier divisor stemming from global sections of some
invertible sheaf L , such that Z = D0 ∩ D1 is reduced and of codimension two.



THE ISKOVSKIH THEOREM 3

The blowing-up V = BlZ(X) comes with a fibration h : V → P1, and we write
B = Spech∗(OV ) for the Stein factorization. Our second main result reveals that
the prime p = 2 plays a particular role:

Theorem B. (see Thm. 5.2) In the above setting, suppose also that the cohomology
group H1(X,OX) vanishes, and that for each rational point t ∈ P1, the resulting
effective Cartier divisor Dt ⊂ X is reduced and geometrically connected. The the
following holds:

(i) The Stein factorization B is a regular genus-zero curve.
(ii) The map g : B → P1 is a universal homeomorphism, with deg(g) | 2.
(iii) For each non-zero s ∈ H0(X,L ) the resulting D ⊂ X has h0(OD) = deg(g).
(iv) If deg(g) = 2 then the ground field F is imperfect of characteristic p = 2,

and B is a twisted line or a twisted ribbon.

Here twisted lines and twisted ribbons designate regular genus-zero curves without
rational points that become, after ground field extension, isomorphic P1 and the
infinitesimal thickening P1 ⊕ OP1(−1), respectively.

Now back to our minimal regular surface X without irregularity and bigenus. To
tackle the problem of self-intersection numbers, we now assume that there is an
integral curve C ⊂ X with h1(OC) = 0 and C2 = 4. The following bend-and-break
type statement is our third main result:

Theorem C. (see Thm. 5.2) In the above situation, the curve C ⊂ X is linearly
equivalent to a curve C ′ that is not integral.

For this we examine four-dimensional linear systems for L = OX(C) to produce
a morphism f : X → P3 with L = f ∗OP3(1). Using the theory of quadric hypersur-
faces, it is not difficult to reduce to the case that the image is a non-normal quartic
surface V ⊂ P3, and f : X → V is the minimal resolution of singularities. Note
that singular quartic surfaces form a classical evergreen topic, as witnessed by the
monographs of Hudson [23] and Jessop [25] from the beginning of the 19th century.
For modern research, we mention the work of Urabe ([49], [50], [51]) and Catanese
and Schütt ([12], [13], [14]).

It turns out that the branch curve B for the normalization map g : Y → V is a
space curve of degree three inside P3. The relevant case is when it is integral, and
there are two possibilities: Either B is a twisted cubic, a classical terminology that
designates a copy of the projective line embedded into the projective three-space via
OP1(3). Or it is a exotic cubic, our ad hoc terminology to designates non-Gorenstein
genus-zero curves arising as denormalizations of the projective line over a cubic
field extension. The latter case can be treated via the conductor squares for the
normalization of the ramification curve R = g−1(B), involving commutative algebra
for local Artin rings.

For the twisted cubics B, an entirely different strategy is required, and we exploit
the amazing fact that BlB(P3) is in an unexpected way a P1-bundle over P2, compare
the work of Blanc and Lamy [10], Ray [39], and Sarkar [40]. This ensures that the
induced map BlB(V )→ P2 factors over a regular genus-zero curve V+(Φ) defined by
some quadratic polynomial Φ ∈ F [X0, X1, X2], and X becomes a ruled surface over
such curves.
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To unravel the geometry of the situation, we are now forced to classify the lo-
cally free sheaves on such twisted ribbons B. This can be seen as a variant of
Grothendieck’s Splitting Theorem for the projective line (see [17] and [22]), and
gives our fourth main result:

Theorem D. (See Thm. 10.2) Up to isomorphism, the indecomposable locally free
sheaves on twisted ribbons B are the ω⊗a

B and FB ⊗ ω⊗b
B , with exponents a, b ∈ Z.

Here ωB is the dualizing sheaf, and FB is the sheaf of rank two given by the
non-split extension 0 → ωB → FB → OB → 0 corresponding to H1(B,ωB) = F .
Similar results for Brauer–Severi curves where obtained by Biswas and Nagaray [9]
and Novaković [35].

The paper is organized as follows: In Section 1 and 2 we collect generalities
on genus-zero curves, twisted ribbons, and quadric hypersurfaces, which play an
important role throughout. In Section 3 we set the stage and examine regular
surfaces X without irregularity and bigenus over arbitrary ground fields F , and
already formulate our generalization of Iskovskih’s Theorem. The integral curves
C ⊂ X having h1(OC) = 0 and C2 ≥ 1 such that all linearly equivalent curves are
integral are examined in Section 4, and the possible values for h0(OC) and C2 are
determined. This relies on the theory of inseparable pencils, which is established in
Section 5. In Section 6 we start to analyze the crucial new case C2 = 4, and formulate
the theorem that some linearly equivalent curve C ′ must be non-integral. This bend-
and-break problem is quickly reduced to the situation that X is a modification of
a non-normal quartic surface V ⊂ P3, subject to several arithmetic conditions on
points with small residue field degree. In Section 7 we compute various invariants
for the normalization maps Y → V . It turns out that the branch curve B ⊂ V
is a space curve of degree three in P3, and the relevant case is when it is integral.
In Section 8 we then see that B is either a twisted cubic, or is a non-Gorenstein
genus-zero curve that arises via denormalization from a projective line over a cubic
field extension F ⊂ E. We cope with such exotic cubics via the geometry of the
conductor square. In Section 9 we treat the twisted cubics B by using the fact
that the blowing-up BlB(P3) unexpectedly carries the structure of a P1-bundle over
P2, and infer that X arises as P1-bundle over a genus-zero curve. To understand
the geometry of such bundles, we generalize Grothendieck’s Splitting Theorem to
sheaves on regular genus-zero curves in Section 10. The final Section 11 completes
the proofs of our main results.

Acknowledgement. This research started when the second author visited the Uni-
versité de Bordeaux, and he wants to thank the host institution for its hospitality.
The first author is supported by the ANR project “FRACASSO” ANR-22-CE40-
0009-01. This research was also conducted in the framework of the research training
group GRK 2240: Algebro-Geometric Methods in Algebra, Arithmetic and Topology,
which is funded by the Deutsche Forschungsgemeinschaft.

1. Genus-zero curves

In this section we collect some generalities that will be used later. Throughout,
we fix an arbitrary ground field F of characteristic p ≥ 0. The terms curve and
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surfaces refer to proper schemes that are equi-dimensional, of dimension n = 1 and
n = 2, respectively. Each curve C comes with the cohomological invariants

h0(OC) = dimF H0(C,OC) and h1(OC) = dimF H1(C,OC).

The former is the degree of the ring of constants E = H0(C,OC), which is a field
provided that C is reduced and connected. In any case, the integer g = h1(OC) will
be called the genus. Note that if C̃ is a twisted form of some curve C, in other words
C̃ ⊗ F ′ ≃ C ⊗ F ′ for some field extension F ⊂ F ′, then hi(OC̃) = hi(OC).

Following Bayer and Eisenbud [3], we say that a ribbon on a curve C0 is a pair
(C, ι), where ι : C0 → C is a closed embedding having a square-zero sheaf of ideals
I that is invertible as OC0-module. The ribbon splits if the inclusion ι : C0 → C
admits a retraction ρ : C → C0; in this case we may regard OC = OC0 ⊕ ϵL as a
sheaf of dual numbers, for some invertible OC0-module L , and write C = C0 ⊕L .
Let f : C ′ → C be a birational morphism between curves without embedded

components. Then the sheaf of conductor ideals I ⊂ OC , defined as the annihilator
for f∗(OC′)/OC , is also a sheaf of ideals in OC′ , and thus defines both the branch
scheme B ⊂ C and the ramification scheme R ⊂ C ′. This yields a commutative
diagram

(1)

R −−−→ C ′y yf

B −−−→ C,

which is both cartesian and cocartesian (see [15], Appendix A). In turn, we have a
short exact sequence 0→ OC → OC′ ×OB → OR → 0, giving a long exact sequence

(2) 0→ H0(OC)→ H0(OC′)×H0(OB)→ H0(OR)→ H1(OC)→ H1(OC′)→ 0

Loosely speaking, the topological space |C| is obtained from |C ′| by identifying the
points in R with the same image in B, and the structure sheaf OC is the kernel for
OC′ ×OB → OR. The diagram (1) is called conductor square, and the passage from
C ′ to C is called pinching.

In what follows, we are interested in the case where the invariants hi(OC) take
the minimal possible values, and find the following locution useful:

Definition 1.1. A curve C with invariants h0(OC) = 1 and h1(OC) = 0 is called a
genus-zero curve.

Note that for each genus-zero curve C, there are no embedded components, and
the Picard scheme PicC/F is étale. Moreover, each twisted form of C is a genus-zero
curve, and each connected modification C ′ of a reduced subcurve in C is a genus-zero
curve, albeit over the field extension F ′ = H0(C ′,OC′).

Each finite ring extension F ⊂ E yields a genus-zero curve via the cocartesian

(3)

Spec(E) −−−→ P1
Ry y

Spec(F ) −−−→ C,
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and see from the exact sequence (2) that the pinching C is a genus-zero curve. A
case of particular interest arises when E is a quadratic or cubic field extension.

To a large extend, the structure of genus-zero curves is determined by the following
result:

Proposition 1.2. For each irreducible genus-zero curve C the following holds:

(i) We have C ≃ P1 if and only if C admits an invertible sheaf of degree one.
(ii) If C is regular, the curve is a twisted form of P1 or P1 ⊕ OP1(−1).
(iii) If C is integral, Gorenstein and singular, the curve is obtained from the

projective line over some quadratic extension F ⊂ E via the pushout (3).

In all three cases, C is a quadric plane curve. In (ii) the curve must be a twisted
form of P1 provided p ̸= 2. In (iii), the curve C is a twisted form of the union
P1 ∪ P1 with P1 ∩ P1 = Spec(F ), or a twisted form of P1 ⊕ OP1(−1).

Proof. Suppose there is an invertible sheaf L of degree one. Then h0(L ) ≥ χ(L ) =
deg(L ) + χ(OX) = 2. Choose a global section s ̸= 0, and let Z ⊂ C be the zero
scheme. The resulting short exact sequence 0 → OC → L → LC → 0 yields an
exact sequence

H0(C,L )→ H0(Z,LZ) −→ H1(X,OX) −→ H1(X,L ) −→ 0.

It follows that L is globally generated and h1(L ) = 0, and thus h0(L ) = χ(L ) = 2.
The resulting morphism f : C → P1 has degree one. The cokernel for OP1 → f∗(OC)
is zero-dimensional with trivial Euler characteristic, hence f is an isomorphism. This
gives (i).

If C is integral and Gorenstein, the dualizing sheaf has deg(ωC) = −2χ(OC) = −2.
Arguing as before, we infer that L = ω⊗−1

C is globally generated with h0(L ) = 3,
and the resulting morphism f : C → P2 is a closed embedding, with image of
degree two. If C is geometrically reduced, we use (i) after base-changing to F alg

and see that C is a twisted form of P1. If C is geometrically non-reduced, we
regard it as a quadric curve in P2, and see that it is a twisted form of 2L ⊂ P2

for some line L. This is a ribbon on P1 with sheaf of ideals I = OP1(−1). From
Ext1(Ω1

P1 ,I ) = H1(P1,OP1(2 − 1)) = 0 we see that the ribbons splits, so C is a
twisted form of P1 ⊕ OP1(−1). This establishes (ii).

Suppose that C is integral, Gorenstein and singular. Let C ′ → C be the normal-
ization, and form the conductor square (1). The C ′ is a regular genus-zero curve
over the field extension F ′ = H0(C ′,OC′). Set

d = [F ′ : F ] and l = dimF ′ H0(R,OR) and λ = dl − dimF H0(B,OB).

The short exact sequence (2) yields 1− (d+(dl−λ))+λ. The Gorenstein condition
ensures λ = dl/2, see [15], Proposition A.2, and the equation becomes d(l− 2) = 2.
The only solution is d = 2 and l = 1, which gives (iii).

The remaining statement arise as follows: From Proposition 2.1 below we see that
in characteristic p ̸= 2 are regular quadric curve C ⊂ P2 must be smooth, hence are
twisted forms of P1. If C is as in (iii), then the tensor product E⊗F alg is isomorphic
to the product algebra F alg×F alg or the ring of dual numbers F alg[ϵ], producing the
union of lines or the ribbon, respectively. □
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Corollary 1.3. Let C be a genus-zero curve that is integral, Gorenstein, and con-
tains at most one rational point. Then the closed points c ∈ C of degree two are
Zariski dense, and their local rings OC,c are regular. If C is singular, each OC(c)
generates the Picard group.

Proof. By the proposition, there is a globally generated invertible sheaf L of degree
two. Choose two global sections s0, s1 that generate L . The resulting morphism
f : C → P1 has degree two. For each rational point t ∈ P1, the preimage is either
a degree two point, or contains a rational point. Thus the degree two points c ∈ C
are Zariski dense.

If C is singular, its description as pinching from P1
E shows that the singular locus

comprises a unique point that is rational, so the OC,c must be regular. Since the
degree map deg : Pic(C) → Z is injective and there is no invertible sheaf of degree
one, each OC(c) is a generator of the Picard group. □

The following terminology will be useful throughout: The twisted forms of the
projective line are called Brauer–Severi curves, and those having no rational points
are referred to as twisted lines. The twisted forms of P1 ∪ P1 with P1 ∩ P1 =
Spec(F ) that are integral are called twisted line pairs. If C is a twisted form of
C0 = P1⊕OP1(−1) that is regular, we say that C is a twisted ribbons ; if it is merely
reduced and singular we call it a twisted ribbon with singularity. Note that this is
only possible over imperfect fields F in character p = 2, and the former actually
needs pdeg(F ) ≥ 2.

Corollary 1.4. Let C be a twisted ribbon, and F ⊂ F ′ be an inseparable quadratic
extension. Then the base-change C ′ = C⊗F ′ is a twisted ribbon, or a twisted ribbon
with singularity. The latter holds if and only there is a closed point c ∈ C with
κ(c) ≃ F ′.

Proof. First note that p = 2, and that the base change C ′ is a twisted form of
P1
F ′ ⊕ OP1

F ′
(−1). It must be integral by [43], Lemma 1.3. It regular, it is a twisted

ribbon. If singular, it must be a twisted ribbon with singularity, according to the
proposition. □

Lemma 1.5. Let C be a twisted ribbon, and F ⊂ E be an inseparable quadratic
extension. Then there is no morphisms f : P1

E → C of degree two.

Proof. Suppose such a morphism exists. Then f is flat, and we get a short exact
sequence

0 −→ OC −→ f∗(OP1
E
) −→ L −→ 0

for some invertible sheaf L on the twisted ribbon C. From χ(OC) = 1 and χ(OP1
E
) =

2 we get deg(L ) = χ(L )− χ(OC) = 0, and thus L = OC . Using Ext1(OC ,OC) =
H1(C,OC) = 0, we see that the above short exact sequence of OC-modules splits. In
turn, the ring structure takes the form f∗(OP1

E
) = OC [T ]/(P ) for some polynomial

P (T ) = T 2 + αT + β whose coefficients belong to H0(C,OC) = k. It follows that
P1
E = C ⊗F E ′ for some quadratic field extension F ⊂ E ′. Taking global sections

we obtain E ′ = E. By Proposition 1.4, the base change C ⊗ E is a twisted ribbon,
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perhaps with singularity, By Proposition 1.2 it contains at most one rational point,
contradiction. □

Lemma 1.6. Let f : C ′ → C be a finite flat morphism of degree two between
genus-zero curves. If C is integral, it must be isomorphic to P1.

Proof. By flatness, the cokernel L = f∗(O ′
C)/OC is invertible, with Euler charac-

teristic χ(L ) = χ(OC′) − χ(OC) = 0. Then deg(L ) = χ(L ) − χ(OC) = −1, and
the assertion follows from Proposition 1.2. □

2. Quadric hypersurfaces

We keep the set-up from the previous section, and now examine quadric hyper-
surfaces V ⊂ Pn+1 of arbitrary dimension n ≥ 0. They are defined by a non-zero
homogeneous polynomial Φ of degree two in n + 2 indeterminates with coefficients
from F . After a change of coordinates, we may write

(4) Φ =
m∑
i=0

λiT
2
i

in the indeterminates Ti, for some 0 ≤ m ≤ n+ 1 and λi ∈ F×, provided p ̸= 2. In
characteristic two, we instead may write

(5) Φ =
r∑

i=1

(XiYi + αiX
2
i + βiY

2
i ) +

s∑
j=1

γjZ
2
j

in some indeterminates Xi, Yi, Zj, with 0 ≤ 2r + s − 1 ≤ n + 1 and αi, βi, γj ∈ F ,
where the γ1, . . . , γs are linearly independent over the subfield F p, and r = 0 or
s = 0 means that the respective sums disappear. See [1], Satz 2 for more details.

Note that our designations Ti or Xi, Yi, Zj for the indeterminates will indicates
that the characteristic is p ̸= 2 or p = 2, respectively. In the latter case, let F p ⊂ E
be the height-one extension generated by the fractions γj/γk, 1 ≤ j, k ≤ s, and
consider the ensuing number

δreg = pdeg(E/F p).

Recall that the p-degree is the cardinality of a p-basis of E over F p, or equivalently of
a basis for Ω1

E/F p over E. The jacobian ideal j = (X1, Y1, . . . , Xr, Yr) defines a linear

subspace Ps−1; for s ≥ 1 we write V0 ⊂ Ps−1 for the induced quadric hypersurface,
which is defined by the the Fermat polynomial Φ0 =

∑s
j=1 γjZ

2
j .

Proposition 2.1. In the above situation, the scheme of non-smoothness Sing(V/F )
is the subscheme in Pn+1 defined by the respective homogeneous ideals

a = (T0, . . . , Tm) and b = (X1, Y1, . . . , Xr, Yr, γ1Z
2
1 + . . .+ γsZ

2
s ).

This coincides with the singular locus Sing(V ), except for p = 2 and s ≥ 1. In this
case, Sing(V ) ⊂ V has codimension 2r + δreg, and coincides with the singular locus
of the Fermat hypersurface V0 ⊂ Ps−1.
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Proof. Computing partial derivatives, one immediately gets the statement on the
scheme of non-smoothness. The second statement is a special case of [43], Theorem
3.3. □

For p ̸= 2 we thus see that Sing(V/F ) = Sing(V ). If non-empty, this locus
has codimension 0 ≤ m ≤ n inside the n-dimensional quadric hypersurface V . In
characteristic two, we get

codimV Sing(V/F ) = 2r and codimV Sing(V ) = 2r + δreg.

Using Serre’s Criterion for normality ([20], Theorem 5.8.6), we immediately get:

Corollary 2.2. The quadric hypersurface V ⊂ Pn+1 is reduced if and only if m ≥ 1
or r ≥ 1 or δreg ≥ 1. It is normal if and only if m ≥ 2 or r ≥ 1 or δreg ≥ 2.

The following observations are useful throughout:

Lemma 2.3. The singular locus Sing(V ) is connected. If V is reduced and non-
normal, the normalization is isomorphic to Pn

E, where F ⊂ E is either a quadratic
field extension or the product ring E = F × F .

Proof. The connectedness statement immediately follows from Proposition 2.1, ex-
cept in the case p = 2 and s ≥ 1. It then suffices to treat the case

Φ =
s∑

j=1

γjZ
2
j and s = n+ 2 and r = 0.

Set t = δreg. Without loss of generality we may assume that γ1, . . . , γt ∈ F are
p-linearly independent over F p, and that γt+1 = 1. By [11], Chapter V, §13, No. 2,
Theorem 1 there are derivations Di : F → F with Di(γj) = δij for 1 ≤ i, j ≤ t, and
thus

Di(Φ) = Z2
i +

s∑
j=t+2

Di(γj)Z
2
j .

Set c = (Φ, D1(Φ), . . . , Dt(Φ)). The resulting closed subscheme V+(c) ⊂ Pn+1

is isomorphic to the hypersurface in ProjF [Zt+1, . . . , Zn+2] defined by a Fermat
equation of the form Z2

t+1 +
∑s

j=t+2 γ
′
jZ

2
j = 0, hence is irreducible of dimension

(n + 2) − (t + 1) = n + 1 − δreg. It contains Sing(V ), which by Proposition 2.1
has the same dimension. Thus the inclusion Sing(V ) ⊂ V+(c) is an equality, and
connectedness follows.

Now suppose that V is reduced and non-normal, with normalization V ′. Assume
first p ̸= 2. By Corollary 2.2, it suffices to treat the case Φ = T 2

0 − λT 2
1 for

some λ ∈ F×, which in characteristic two does not belong to F 2×. Then the ring
E = F [U ]/(U2−λ) is regular, and we write ω ∈ E for the class of the indeterminate
U . As for [43], Proposition 4.1, one easily checks that the homomorphism

F [T0, . . . , Tn+1] −→ E[T ′
1, . . . , T

′
n+1]

of graded F -algebras given by T0 7→ ωT ′
1 and Ti 7→ T ′

i for 1 ≤ i ≤ n + 1 induces a
birational morphism Pn

E → V ⊂ Pn+1, hence V ′ = Pn
E. □
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3. Surfaces without irregularity and bigenus

Let F be a ground field of characteristic p ≥ 0, not necessarily perfect, and X be
a regular surface, not necessarily smooth, with numerical invariants

h0(OX) = 1 and h1(OX) = h0(ω⊗2
X ) = 0.

Clearly, we have h0(ωX) = 0, and Serre Duality ensures h2(OX) = 0, such that
χ(OX) = 1. The Chern number c21 = (ωX · ωX) and the Picard number ρ ≥ 1
are further invariants of interest. The same goes for invariants stemming from the
coherent sheaf Ω1

X/F , which is locally free of rank two if and only if X is smooth.
Throughout we also assume thatX isminimal. In other words, there is no integral

curve R ⊂ X such that

(R ·R) = (R · ωX) = −h0(OE).

Such R are isomorphic to the projective line over E = H0(R,OR), and are called
exceptional curves of the first kind ; one may call them (−1)-curves as well, in ref-
erence to the sign occurring the above equations. We can already state the main
result of this paper:

Theorem 3.1. In the above situation, one of the following conditions holds:

(i) The surface X is isomorphic to P2, or to a quadric in P3.
(ii) There is a morphism f : X → B with f∗(OX) = OB such that the base and

the generic fiber are regular genus-zero curves.
(iii) The dualizing sheaf ωX generates the Picard group Pic(X).

This trichotomy generalizes Iskovskih’s result ([24], Theorem 1), by replacing
smoothness with regularity and allowing imperfect base fields. The proof requires
extensive preparation, and will be completed in Section 11. Note that our surface
X may be geometrically non-normal, or even geometrically non-reduced. In this
general setting, one has to cope with two new issues: The integral curves C ⊂ X
may have larger self-intersection C2, compared to the smooth case, and the field of
constants E = H0(C,OC) could be an extension of the ground field F .

In this section we closely follow the exposition of Kollár, Smith and Corti ([28],
Section 3.2), but with special attention to the above issues. Let us start with the
following key fact, classically called “Termination of Adjunction”.

Lemma 3.2. For each invertible sheaf L we have h0(L ⊗ ω⊗n
X ) = 0 for all suffi-

ciently large n ≥ 0.

Proof. Serre Duality ensures h2(ω⊗−1
X ) = h0(ω⊗2

X ), which vanishes by our assump-
tion. Thus Riemann–Roch gives h0(ω⊗−1

X ) ≥ χ(ω⊗−1
X ) = c21 + χ(OX) = c21 + 1. We

have ω⊗−1
X ̸≃ OX because h0(ωX) = 0. So if c21 ≥ 0, then each ample divisor H ⊂ X

has (ωX ·H) < 0, therefore (L ⊗ ω⊗n
X ·H) < 0 for all n sufficiently large, and then

h0(L ⊗ ω⊗n
X ) = 0.

Suppose now c21 < 0. Then (L ⊗ ω⊗n
X · ωX) < 0 for all n ≥ n′ with some integer

n′, and then the L ⊗ ω⊗n
X are non-trivial. Seeking a contradiction, we assume that

for infinitely many ni ≥ 0, i ≥ 0 the invertible sheaf L ⊗ ω⊗ni
X admits a non-zero

global section si. Without loss of generality we may assume ni ≥ n′. Let Di ⊂ X be
the zero scheme of the si. Decompose D0 =

∑
mjCj into irreducible components.
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Then some C = Cj has (C · ωX) < 0. Since X is minimal, we must have C2 ≥ 0,
and thus (L ⊗ ω⊗ni

X ·C) ≥ 0 for all i ≥ 0. On the other hand, (ωX ·C) < 0 ensures
that for sufficiently large i ≥ 0 we have (L ⊗ ω⊗ni

X · C) < 0, contradiction. □

This has an immediate consequence for the Picard scheme:

Proposition 3.3. The canonical map PicX/k → NumX/k of group schemes is an
isomorphism.

Proof. The Lie algebra for PicX/k is the cohomology group H1(X,OX). This van-

ishes by assumption, so Pic0X/k is trivial. To see that the local system NumX/k

contains no torsion, it suffices to treat the case that k is separably closed. Seeking a
contradiction, we assume that there is an invertible sheaf L of finite order m > 1 in
the Picard group. Then L is numerically trivial with h0(L ) = 0, so Serre Duality
and Riemann–Roch gives h2(L ) ≥ χ(L ) = χ(OX) = 1. Again by Serre duality, the
invertible sheaf N = ωX⊗L ∨ admits a non-zero global section, and the same holds
for the tensor power N ⊗m = ω⊗m

X . Thus h0(ω⊗n
X ) ̸= 0 for all positive multiples n of

m, in contradiction to Lemma 3.2. □

We conclude that Pic(X) = Num(X) is a free abelian group. Furthermore, the
class of the dualizing sheaf ωX is non-zero, in light of Lemma 3.2.

Proposition 3.4. Suppose the dualizing sheaf ωX does not generate the Picard group
Pic(X). Then there is an integral curve C ⊂ X such that h1(OC) = 0 and C2 ≥ 0,
and that every linearly equivalent C ′ ⊂ X is also integral.

Proof. For each ample divisor H ⊂ X, we consider the function n 7→ h0(ω⊗n
X (H)).

It is non-zero for n = 0, but vanishes for n sufficiently large, by Lemma 3.2. Let
n = nH be the largest integer such that N = ω⊗n

X (H) has a non-zero global section
but N ⊗ ωX = ω⊗n+1

X (H) does not. Fix such a global section s, and regard it as
homomorphism s : ω⊗−n

X → OX(H). Now recall that Pic(X) is generated by the
classes of very ample divisors. If the s are bijective for all H, then ωX would generate
the Picard group, contradiction. Therefore for some H the map s is not bijective.

Summing up, we find some non-trivial invertible sheaf N with h0(N ) ̸= 0 but
h0(N ⊗ ωX) = 0. Now re-choose a non-zero s ∈ H0(X,N ) so that the zero
scheme D ⊂ X maximizes

∑r
i=1mi, where D =

∑r
i=1miCi is the decomposition

into irreducible components. Let C =
∑

m′
iCi be any subcurve of D. The resulting

invertible sheaf L = OX(C) has the property that h0(L ⊗−1) = 0 and h0(L ⊗ωX) =
0. Now Serre Duality ensures h2(L ⊗−1) = 0, and Riemann–Roch gives

(6) 0 = h0(L ⊗−1) + h2(L ⊗−1) ≥ χ(L ⊗−1) =
(C +KX) · C

2
+ χ(OX).

The Adjunction Formula yields deg(ωC) = (C+KX) ·C ≤ −2χ(OX) = −2, whereas
Serre Duality gives deg(ωC) = −2χ(OC), thus χ(OC) ≥ 1.

Now additionally assume that for the subcurve C ⊂ D, the finite k-algebra E =
H0(C,OC) is a field. The latter condition holds, for example, if C is reduced and
connected, and in particular if C is integral. The cohomology group H1(C,OC)
carries the structure of an E-vector space. We have

1 ≤ χ(OC) = [E : k](1− dimE H1(C,OC))
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and conclude h1(OC) = 0. In particular, C is a genus-zero curve over the extension
field E.
The preceding paragraph applies in particular to C = Ci, so each Ci is a genus-

zero curve over the field Ei = H0(Ci,OCi
). Seeking a contradiction, we assume

now that C2
i < 0 for all 1 ≤ i ≤ r. If C2

i = −[Ei : k] then Ci ⊂ X would be an
exceptional curve of the first kind, contradiction. Thus C2

i ≤ −2[Ei : k], and from

−2[Ei : k] = χ(OCi
) = deg(ωCi

) = C2
i + (ωX · C) ≤ −2[Ei : k] + (ωX · C),

we infer (ωX · Ci) ≥ 0, and thus (ωX ·D) ≥ 0. Now recall that ω⊗−n
X (D) = OX(H)

is ample, and therefore

(ωX(D) ·D) = (ω⊗−n
X (D) ·D) + (ω⊗n+1

X ·D) ≥ (ω⊗n+1
X ·D) ≥ 0.

On the other hand, we saw in (6) with C = D that (ωX(D) ·D) < 0, contradiction.
This shows that some C = Cj has h1(OC) = 0 and C2 ≥ 0. By maximality of∑r

i=1mi ≥ 1, every linearly equivalent curve C ′ remains integral. □

Proposition 3.5. Let C ⊂ X be an integral curve with h1(OC) = 0 and C2 ≥ 0.
Then the invertible sheaf L = OX(C) is globally generated, with h0(L ) = 1 +
h0(OC) + C2.

Proof. The short exact sequence 0 → OX → L → LC → 0 gives a long exact
sequence

0 −→ H0(X,OX) −→ H0(X,L ) −→ H0(C,LC) −→ H1(X,OX),

and the term on the right vanishes. So to see that L is globally generated, it suffices
to verify this for LC . This indeed holds, because C is an integral genus-zero curve
over the field E = H0(C,OC), and deg(LC) = C2 ≥ 0. Furthermore, we have
h1(LC) = 0, and thus h0(LC) = χ(LC) = deg(LC) + χ(OC) = C2 + h0(OC). The
assertion on h0(L ) follows from the above long exact sequence. □

In the above situation, the globally generated invertible sheaf L = OX(C) defines
a morphism

f : X −→ Pn with f ∗OPn(1) = L ,

where n = h0(OC)+C2. The schematic image V ⊂ Pn is an integral closed subscheme
of dimension one or two. This image is not a linear subscheme, because the induced
map H0(Pn,OPn(1))→ H0(X,L ) is bijective. Note that the image may or may not
be regular, and that we have the formula

(7) C2 = deg(f) · deg(V ),

where the degree for f : X → V is formed in the sense of Kleiman ([27], Chapter I,
Section 2, Definition on page 299). The following already settles parts of Theorem
3.1:

Proposition 3.6. Suppose there is an integral curve C ⊂ X with h1(OC) = 0 and
0 ≤ C2 ≤ 2. Then one of the following holds:

(i) The surface X is isomorphic to the projective plane P2, or isomorphic to a
quadric surface in P3.

(ii) There is morphism g : X → B with OB = g∗(OX) such that the base B and
and the generic fiber Xη are regular genus-zero curves.
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Moreover, X is geometrically normal provided the characteristic is p ̸= 2.

Proof. Suppose first that C2 = 0. Then the image of f : X → Pn must be a curve.
Let B = Spec f∗(OX) be the Stein factorization, and g : X → B be the resulting
morphism. Then B is integral and normal. The Leray–Serre spectral sequence gives
H0(B,OB) = H0(X,OX) and an exact sequence

0 −→ H1(B,OB) −→ H1(X,OX) −→ H0(B,R1g∗(OX)) −→ 0.

Consequently B is a regular genus-zero curve and R1g∗(OX) is locally free. Since
C2 = 0 the image f(C) ⊂ Pn is a singleton, and thus C = g−1(b) for some closed
point b ∈ B. The formation of R1g∗(OX) commutes with base-change, because g
is flat with one-dimensional fibers, and thus R1g∗(OX) ⊗ κ(b) = H1(C,OC) = 0.
Semicontinuity now gives R1g∗(OX)⊗κ(η) = 0, in other words, the generic fiber Xη

is a genus-zero curve.
For the remaining cases the image V ⊂ Pn is an integral surface, subject to (7).

Also note that the integer h0(OC) divides (L ·C) = C2. Suppose now that C2 = 1.
Then f : X → V is birational, h0(OD) = 1 and thus h0(L ) = 3. It follows V = P2.
This gives a birational morphism f : X → P2, which is a sequence of blowing-ups.
It must be an isomorphism because X is minimal.

It remains to treat the case C2 = 2. We then have 1 ≤ h0(OC) ≤ 2 and thus
4 ≤ h0(L ) ≤ 5. To cope with the possible constant field extension, we observe
that L |C is generated by two global sections. We thus find s0, . . . , s3 ∈ H0(X,L )
without common zero, and now replace f by the morphism f : X → P3 with
f−1(ti)⊗ 1 = si, where P3 = ProjF [t0, . . . , t3]. Now the image V must be a quadric
surface, and the induced f : X → V is birational. By the argument in the preceding
paragraph, f is an isomorphism provided that V is regular.

Seeking a contradiction, we assume that the quadric surface V is not regular. The
morphism f : X → V factors over the normalization V ′ → V , thus h0(OV ′) = 1.
It follows from Lemma 2.3 that V is normal, and the singular locus is a singleton
v0 ∈ V . It follows from the description in Proposition 2.1 that this point is ratio-
nal. Choose some global section of OV (1) so that the zero scheme D ⊂ V passes
through v0. Then the preimage f−1(D) is linearly equivalent to C but reducible,
contradiction.

It remains to check that X is geometrically normal, provided p ̸= 2. If C2 = 0,
then the base and the generic fiber of the fibration g : X → B are smooth, according
to Proposition 1.2, so the Sing(X/F ) is finite. By Serre’s Criterion ([20], Theorem
5.8.6) the scheme X is geometrically normal. There is nothing to prove if X = P2,
so it remains to treat the case that X ⊂ P3 is a regular quadric. Then X is smooth,
by Proposition 2.1. □

4. Fields of constants and self-intersections

We keep the set-up from the previous section, such that X is a minimal regular
surface over a ground field F of characteristic p ≥ 0, with h0(OX) = 1 and h1(OX) =
h0(ω⊗2

X ) = 0. We also assume that there is an integral curve C ⊂ X with h1(OC) = 0
and self-intersection C2 > 0, such that all linearly equivalent curves C ′ are also
integral. By Proposition 3.5 the invertible sheaf L = OX(C) is globally generated
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and has

(8) h0(L ) = 1 + h0(OC) + C2 ≥ 3.

In this section, we will determine the second summand, and constrain the third.

Proposition 4.1. The degree of the constant field extension is h0(OC) = 1.

Proof. Seeking a contradiction, we assume that E = H0(C,OC) is a non-trivial
extension of the ground field F . Using C2 > 0 and the Hodge Index Theorem
([18], Theorem 1.1), we see that C is geometrically connected, thus F ⊂ E is
purely inseparable ([11], Chapter V, §7, No. 8, Proposition 13). Hence we are in
characteristic p > 0 and the field F is imperfect. By Theorem 5.2 below we have
p = 2 and [E : F ] = 2.
Regarding C as a genus-zero curve over E, we find with Corollary 1.3 a closed

point z ∈ C such that the residue field K = κ(z) has degree at most two over
E, and that the local ring OC,z is regular. Choose a global section of L |C that
vanishes at z ∈ C and has only simple zeros, and extend it to a global section
s′ ∈ H0(X,L ). Let C ′ ⊂ X be its zero-scheme and set Z = C ∩ C ′. The ensuing
blowing-up r : BlZ(X) → X comes with a fibration h : BlZ(X) → P1, as explained
in the next section. Again by Theorem 5.2, the Stein factorization B is a twisted
line or twisted ribbon. In particular, our ground field F is infinite. Moreover, the
projection g : B → P1 is radical of degree two, and for each rational point t ∈ P1,
the fiber g−1(t) is reduced.

Suppose that B is a twisted line. First note that over some dense open set the
formation of h∗(OX) commutes with arbitrary base-change. By Corollary 1.3 we
can pick a closed point b ∈ B that is contained in this open set and whose residue
field L = κ(b) is a separable quadratic extension. Then the image g(b) ∈ P1 is
not rational, hence also has residue field L. Consider the corresponding L-valued
points b ∈ B ⊗F L and g(b) ∈ P1

L. The base-change B ⊗F L is the projective
line over L, and the fiber over t = g(b) has coordinate ring L[ϵ]. So this point
corresponds to a divisor D on the base-change X ⊗ L that is linearly equivalent to
C ⊗ L and has H0(D,OD) = L[ϵ], and the structure morphism D → SpecL[ϵ] is
flat. Since X ⊗L remains regular, the subcurve H ⊂ D defined by ϵ = 0 is Cartier,
with D = 2H, and thus H2 > 0. On the other hand, the short exact sequence
0→ ϵOH → OD → OH → 0 gives H2 = − deg(ϵOH) = 0, contradiction.
It remains to treat the case that B is a twisted ribbon. The fiber r−1(z) of the

blowing-up is a copy of P1
K , and the degree of composite map

P1
K −→ B −→ P1

is the degree of the finite scheme r−1(z) ∩ h−1(0) = Spec(K). By construction
[K : F ] = [K : E] · [E : F ] ≤ 4. Using Lemma 1.5 we see deg(P1

K/B) > 2, which
gives [K : F ] > 4, contradiction. □

So formula (8) simplifies to h0(L ) = 2 + C2. It turns out that there are only
three possibilities:

Proposition 4.2. The self-intersection number satisfies C2 | 4. If there are two
rational points a ̸= b on X we actually have C2 | 2.
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Proof. First suppose that there are rational points a ̸= b, and consider the finite
subscheme Z ⊂ X with coordinate ring OX,a/ma × OX,b/m

2
b , which has h0(OZ) =

1 + 3 = 4. If C2 ≥ 3 we have h0(L ) ≥ 5, and find some curve C ′ that is linearly
equivalent to C and contains Z. Then C ′ is a genus-zero curve that is integral,
Gorenstein and singular with two rational points, in contradiction to Proposition
1.2. This settles the second assertion.

Suppose now that X contains at most one rational point. By Corollary 1.3, the
integer C2 ≥ 1 is even. Seeking a contradiction, we now assume that C2 ≥ 6, hence
h0(L ) ≥ 8. Fix a closed point c ∈ C of degree two and form the finite subscheme
Z ⊂ X with coordinate ring OX,c/m

2
c , which has h0(Z) = 6. Again we find a curve

C ′ that is linearly equivalent to C and contains Z. By construction, the local ring
OC′,c is singular and the residue field κ(c) has degree two, contradiction. □

5. Inseparable pencils

In this section we establish some general facts, which appear to be of independent
interest and have been used in the previous section. Let F be a ground field of char-
acteristic p ≥ 0, and X be a proper normal scheme with h0(OX) = 1, of dimension
n ≥ 2. Let L be an invertible sheaf not isomorphic to OX . For each non-zero global
section s ∈ H0(X,L ), the resulting short exact sequence

(9) 0 −→ L ⊗−1 s−→ OX −→ OD −→ 0

defines an effective Cartier divisor D ⊂ X. The goal of this section is to understand
the finite F -algebra E = H0(D,OD) in dependence of the global section s ̸= 0. We
start with the following observation:

Lemma 5.1. Suppose h1(OX) = 0. Then the number h0(OD) = [E : F ] does not
depend on the global section s ̸= 0.

Proof. The short exact sequence (9) yields a long exact sequence

H0(X,L ⊗−1) −→ H0(X,OX) −→ H0(D,OD) −→ H1(X,L ⊗−1) −→ H1(X,OX).

The term on the right vanishes by assumption, and the term on the left is zero
becauseX is integral and L ̸≃ OX admits a non-zero global section. Thus h0(OD) =
1 + h1(L ⊗−1), which obviously does not depend on the global section. □

Suppose now we have two non-zero global sections s0, s1 ∈ H0(X,L ) such that
the resulting common zero-scheme Z ⊂ X has codimension two, and is also re-
duced. Write Di ⊂ X with i = 0, 1 for the resulting effective Cartier divisors. Each
irreducible component of Di has codimension one, according to Krull’s Principal
Ideal Theorem. Moreover, there are no common irreducible components, because
Z = D1 ∩ D2 has codimension two. Being normal, the scheme X satisfies Serre’s
Condition (S2), thus Di satisfies (S1), and we conclude that Z is an effective Cartier
divisor inside Di. Thus at each point z ∈ Z, the sheaf of ideals I ⊂ OX for the
closed subscheme Z is generated by a regular sequence contained in the maximal
ideal mz ⊂ OX,z. For each generic point ζ ∈ Z, the local ring OZ,ζ and hence also
OX,ζ are regular.

Let V = BlZ(X) be the blowing-up, and write r : V → X for the resulting
morphism. First note that r∗(OV ) = OX and Rir∗(OV ) = 0 for i ≥ 1, according to
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[4], Exposé VII, Lemma 3.5, and thus hj(OV ) = hj(OX) for all j ≥ 0. According to
[30], Proposition 3.4, the scheme V satisfies Serre’s Condition (S2), and furthermore
is regular over an open set U ⊂ X that contains all codimension one-points in X
and all generic points in Z. It follows that for each point ξ ∈ V of codimension one,
the local ring OV,ξ is regular, hence V is normal. Moreover, the exceptional divisor
R = g−1(Z) is reduced.

Consider the invertible sheaf N = r∗(L )(1) = r∗(L )(−R). The short exact
sequence 0→ N → r∗(L )→ r∗(L )|R→ 0 yields an exact sequence

0 −→ H0(V,N ) −→ H0(V, r∗(L )) −→ H0(R, r∗(L )|R).

In turn, the s ∈ H0(X,L ) that vanishes along Z can also be seen as the elements
in H0(V,N ). Each such s ̸= 0 thus defines effective Cartier divisors D ⊂ X and
D′ ⊂ V , where the latter is the strict transform of the former, and the induced map
r : D′ → D is the blowing-up with center Z ⊂ D. Since Z is already Cartier inside
D, this gives an identification D′ = D.
The strict transforms D′

0 and D′
1 are disjoint, which follows from [38], Lemma 4.4

and our assumption that Z is reduced. In turn, the invertible sheaf N is globally
generated by s0 and s1, which define a morphism

h : V −→ P1 with h∗(OP1(1)) = N .

The morphism is surjective, because N is numerically non-trivial, and therefore
flat. Let B = Spech∗(OV ) be the Stein factorization, with resulting morphisms
f : V → B and g : B → P1. Then OB = f∗(OV ), so B is normal, with h0(OB) = 1.
Moreover, the Leray–Serre spectral sequence gives an exact sequence

(10) 0 −→ H1(B,OB) −→ H1(V,OV ) −→ H0(B,R1f∗(OV )) −→ H2(B,OB),

and the term on the right vanishes. The following result reveals that the prime p = 2
plays a special role in the general theory of linear systems. It was already used in
the previous section, and constitutes our second main result:

Theorem 5.2. In the above setting, suppose that H1(X,OX) = 0, and that for each
non-zero linear combination t = λ0s0 + λ1s1, the resulting effective Cartier divisor
Dt ⊂ X is reduced and geometrically connected. The the following holds:

(i) The Stein factorization B is a regular genus-zero curve.
(ii) The map g : B → P1 is a universal homeomorphism, with deg(g) | 2.
(iii) For each non-zero s ∈ H0(X,L ) the resulting D ⊂ X has h0(OD) = deg(g).
(iv) If deg(g) = 2 then the ground field F is imperfect of characteristic p = 2,

and B is a twisted line or twisted ribbon.

Proof. Assertion (i) immediately follows from the exact sequence (10). Given a
rational point t ∈ P1, we set T = g−1(t) and consider the schematic fiber Vt =
h−1(t) = f−1(T ). The projection f : Vt = f−1(T ) → T is surjective and flat. Note
that Vt is identified with the effective Cartier divisor Dt ⊂ X defined by the global
section t = λ0s0 + λ1s1. By assumption, Vt is reduced and geometrically connected,
so the same holds for T . In particular, T = {b} is a singleton, with coordinate ring
κ(b). So Lemma 5.3 below gives (ii) and (iv).
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It remains to verify (iii). Since the morphism f : V → B is flat, the function
b 7→ dimκ(b) H

0(Vb,OXb
) is upper semicontinuous ([21], Chapter III, Theorem 12.8).

So the set U ⊂ B where it takes the generic value is open. If the residue field of
t = g(b) is separable, the inclusion Specκ(b) ⊂ g−1(t) is an equality, and hence

(11) dimκ(b) H
0(Vb,OVb

) = deg(g)−1 · dimκ(t) H
0(Vt,OVt).

Applying Lemma 5.1 with the base-change X⊗κ(t), we see that the right-hand side
does not depend on the separable point t ∈ P1, and infer that b ∈ U whenever the
image f(b) ∈ P1 is separable.
By Grauert’s Criterion ([21], Chapter III, Corollary 12.9), the formation of f∗(OX)

commutes with base-change over U . Thus H0(Xb,OXb
) are one-dimensional vector

spaces over κ(b) for all b ∈ U . If furthermore t = f(b) is separable we get h0(OXt) =
deg(g) from (11). Now Lemma 5.1 yields (iii). □

The above arguments rest on the following key observation:

Lemma 5.3. Let B be a regular genus-zero curve, and g : B → P1 be a surjective
morphism of degree d ≥ 2. Suppose that for each rational point t ∈ P1, the fiber
g−1(t) is reduced and geometrically connected. Then the field F is imperfect of
characteristic p = 2, the curve B is a twisted line or twisted ribbon, and g : B → P1

is a universal homeomorphism of degree d = 2.

Proof. Suppose the field F is perfect. Choose a geometric point Spec(Ω) → P1

over some rational point t ∈ P1. The resulting geometric fiber is both reduced and
connected, hence isomorphic to Spec(Ω), which results in the contradiction d = 1.
Thus F is imperfect, and we are in characteristic p > 0.

Let K = OP1,η and L = OB,η be the function fields of our curves. We start with
an observation on intermediate fields K ⫋ L′ ⊂ L. In light of [19], Proposition
7.4.18 and Corollary 7.4.13, each such L′ defines a regular curve B′, together with
a factorization g = g′ ◦ h into h : B → B′ and g′ : B′ → P1. Note that all three
morphisms are surjective, finite and flat. We claim that B′(F ) = ∅. Indeed, if there
is a rational point b′ ∈ B′, the image t = g′(b′) is rational, and the fiber Z = h−1(b)
is a finite subscheme with h0(OZ) = [L′ : K] ≥ 2. Since b ∈ Z, the scheme Z is
non-reduced or disconnected, in contradiction to our assumption on the fibers of
g : B → P1.
Applying this observation with L′ = L, we see that B contains no rational point.

Let L′ be the relative separable closure of K ⊂ L. Then the generic fiber of g′ :
B′ → P1 is étale, so there is a non-empty open set U ⊂ P1 over which g′ is étale.
Since F is infinite, there must be rational points t ∈ U . If [L′ : K] = deg(B′/P1) is
greater than one, the fiber Z = g−1(t) is geometrically disconnected, contradiction.
It follows that the field extension K ⊂ L is purely inseparable ([11], Chapter V, §7,
No. 8, Proposition 13), hence g : B → P1 is a universal homeomorphism, of degree
d = pr for some r ≥ 1. If p ̸= 2 the invertible sheaf g∗OP1(1) has odd degree, in
contradiction to Proposition 1.2. This establishes p = 2. From B(F ) = ∅ we also
see that B is either a twisted line or a twisted ribbon.

Since K ⊂ L is purely inseparable, we find a chain of intermediate fields K =
L0 ⊂ . . . ⊂ Lr = L with [Li+1 : Li] = p. Consider the corresponding regular curves
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Bi and finite surjective morphisms

B = Br −→ Br−1 −→ . . . −→ B0 = P1.

It remains to show r = 1, and for this it suffices to verify that B′ = Br−1 is a genus-
zero curve containing a rational point. Let f : B → B′ be the given morphism. The
short exact sequence

(12) 0 −→ OB′ −→ f∗(OB) −→ L ⊗−1 −→ 0,

defines an invertible sheaf L on B′. The trace map f∗(OB)→ OB′ vanishes on the
subsheaf OB′ because d = p > 0, and the induced map L ⊗−1 → OB′ is non-zero
since B is reduced. Hence deg(L ) ≥ 0. On the other hand, the long exact sequence
for (12) reveals

h0(OB′) = 1 and h0(L ⊗−1) = h1(OB′) and h1(L ⊗−1) = 0.

This gives deg(L ) = χ(OB′)−χ(L ⊗−1) = 1−2h1(OB′). Consequently B′ is a genus-
zero curve and L has degree one. It follows that B′ contains rational points. □

6. Bend and break

We keep the notation as in Section 3, such that X is a minimal regular surface
with invariants h0(OX) = 1 and h1(OX) = h0(ω⊗2

X ) = 0, over a ground field F . The
third main results of this paper is the following:

Theorem 6.1. Suppose there is an integral curve C ⊂ X with h1(OC) = 0 and
C2 = 4. Then the curve is linearly equivalent to some C ′ ⊂ X that is not integral.

In other words, “bending” the curve C within its linear system, it “breaks” into
some C ′ = C ′

1+C ′
2. The proof requires extensive preparation, and will be completed

in Section 11. Special cases will already treated at the respective ends of this and
the following two sections.

Our approach depends on certain maps f : X → P3 that we introduce now.
First note that h0(OC) = 1, according to Proposition 4.1. By Proposition 3.5, the
invertible sheaf L = OX(C) is globally generated, the restriction map H0(X,L )→
H0(C,L |C) is surjective, with h0(L ) = 6 and h0(L |C) = 5.

We now choose a four-dimensional linear system as follows: Select two sections on
L |C without common zeros, and extend them to global sections s1, s2 ∈ H0(X,L ).
Choose one more global section s3 so that the restrictions s1|C, s2|C, s3|C are linearly
independent, and let s0 be a global section whose zero-scheme is C. This defines a
morphism

f : X −→ P3 with f ∗OP3(1) = L ,

having f−1(ti) ⊗ 1 = si when writing P3 = ProjF [t0, . . . , t3]. The schematic image
V ⊂ P3 is an integral surface. It is not a linear subscheme, because the canonical
map H0(P3,OP3(1))→ H0(X,L ) is injective.

The induced morphism f : X → V is an alteration. Let Y = Spec f∗(OX) be the
Stein factorization, and write

h : X −→ Y and g : Y −→ V

for the resulting morphisms.
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Proposition 6.2. The finite morphism g : Y → V is flat over the regular locus
Reg(V ), and the birational morphism h : X → Y is the minimal resolution of
singularities for the normal surface Y .

Proof. The scheme Y is Cohen–Macaulay, and over the complement of Sing(V ) the
finite surjective morphisms g : Y → V must be flat ([45], page IV-37, Proposition
22). The second statement holds because the regular surface X is minimal. □

To simplify notation, the pullbacks of the invertible sheaf OP3(1) are also written
as OV (1) and OY (1) and OX(1) = L .

Proposition 6.3. The scheme V is Gorenstein with ωV = OV (d − 4), where d =
deg(V ), and the numerical invariants are h0(OV ) = 1 and h1(OV ) = 0. Moreover,
the canonical maps

(13) H0(OP3(1))→ H0(OV (1)) and H0(OY (1))→ H0(OX(1)) = H0(X,L )

are bijective, and H0(OV (1))→ H0(OY (1)) is injective.

Proof. Since V ⊂ P3 is an effective Cartier divisor, it must be Gorenstein, and the
Adjunction Formula gives ωV = OV (d−4). From the long exact sequence stemming
from 0→ OP3(−d)→ OP3 → OV → 0, we immediately get the numerical invariants.

From the long exact sequence for 0 → OP3(1 − d) → OP3(1) → OV (1) → 0 and
the vanishing of H i(P3,OP3(1 − d)) for i ≤ 1 one sees that the restriction map
H0(P3,OP3(1))→ H0(V,OV (1)) is bijective. We have h∗(OX) = OY , so the Projec-
tion Formula ensures that H0(OY (1)) → H0(OX(1)) is bijective. By construction,
the composite map H0(OP3(1)) → H0(X,L ) is injective, hence the same holds for
H0(OV (1))→ H0(OY (1)). □

From (7) we see that there are two cases: Either V ⊂ P3 is a quadric surface and
g : Y → X is a double covering, or V ⊂ P3 is a quartic surface and g : Y → V is
birational. The former case, together with other special situations, can be treated
quickly:

Proposition 6.4. Theorem 6.1 holds under any of the following conditions:

(i) There is a closed point x ∈ X of degree at least five mapping to a point
v ∈ V of degree at most two.

(ii) The singular locus of Y contains a point whose image on V has degree at
most three.

(iii) The normal surface Y contains a closed point of degree three.
(iv) The surface V ⊂ P3 has degree two.

Proof. (i) Suppose some closed point x ∈ X has [κ(x) : F ] ≥ 5 and maps to a point
v ∈ V with [κ(v) : F ] ≤ 2. Then there are two planesH1 ̸= H2 with v ∈ H1∩H2. Set
Ci = f−1(Di). We are done one of the Ci non-integral, so we assume that both are
integral. Then C1 ∩ C2 is zero-dimensional, with h0(OC1∩C2) = (C1 · C2) = C2 = 4.
By construction x ∈ C1 ∩ C2, giving 4 ≥ h0(OC1∩C2,x) ≥ 5, contradiction.

(ii) Suppose some y ∈ Sing(Y ) has an image v = g(y) with [κ(v) : F ] ≤ 3. Using
H0(P3,OP3(1)) = 4, we find some plane H ⊂ P3 containing v. Then C ′ = f−1(H) is
a curve linearly equivalent to C ⊂ X. It contains the strict transform of the curve
H ∩ V , together with some exceptional divisor, hence is reducible.
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(iii) Now we have a closed point y ∈ Y of degree three. In light of the previous
cases, we merely have to treat the case that the local ring OY,y is regular. Again we
find a plane H ⊂ P3 containing v. Then C ′ = f−1(H) is a curve linearly equivalent
to C, containing a point of degree three. It is thus a copy of the projective line, and
we find two rational points x ̸= x′ on X. Let Z ⊂ X be the closed subscheme of
degree four with coordinate ring OX,x/m

2
x × κ(x′), and recall that L = OX(C) has

h0(L ) = C2 + 2 = 6. So some curve C ′ that is linearly equivalent to C contains Z.
By Proposition 1.2, this curve is non-integral.

(iv) Now the finite morphism g : Y → V has degree two. Seeking a contradiction,
we assume that every curve C ′ ⊂ X linearly equivalent to C is integral. The
alteration f : X → V factors over the normalization Ṽ , hence h0(OṼ ) ≤ h0(OX) = 1.
Proposition 2.3 ensures that V is normal, and that the singular locus contains at
most one point. For each planeH ⊂ P3, the intersectionD = V ∩H and its preimage
C ′ = f−1(D) are integral genus-zero curves. The latter is linearly equivalent to C,
and the morphism f : C ′ → D has degree two.

Now choose H disjoint from Sing(V ). Then f : C ′ → D is flat, and we see from
Proposition 1.6 that D is isomorphic to P1. It follows that the regular locus of V
contains rational points. Fix such a rational point v ∈ V and set Z = Spec(OV,v/m

2).
Using h0(OZ) = 3 and h0(OP3(1)) = 4 we can find another plane H ⊂ P3, now
containing Z. This gives new integral genus-zero curves D = V ∩ H and C ′ =
f−1(D), related by a morphism f : C ′ → D of degree two. By construction, the
local ring OD,v is singular. According to Lemma 2.3, our plane H must be disjoint
from Sing(V ), and it follows that f : C ′ → D is flat. As above we get D = P1. But
this contradicts that D is singular. □

7. Non-normal quartic surfaces

We keep all assumptions of the preceding section, and continue to work towards
the proof for Theorem 6.1. Recall that X is a minimal regular surface over the
ground field F with invariants h0(OX) = 1 and h1(OX) = h0(ω⊗2

X ) = 0, containing
an integral curve C ⊂ X with h1(OC) = 0 and C2 = 4. We now additionally assume
that our linear system maps X to a quartic surface V ⊂ P3. Then f : X → V is
birational, g : Y → V is the normalization, and h : X → Y is the minimal resolution
of singularities.

Proposition 7.1. The quartic surface V ⊂ P3 is non-normal.

Proof. Suppose V is normal, such that Y = V . Form the transcendental field
extension F ′ = F (t). One easily checks that X ⊗ F ′ remains regular and minimal,
and C ⊗ F ′ stays integral, and V is normal if and only if this holds for V ⊗ F ′. So
without loss of generality we may assume that F is infinite. We then find a plane
H ⊂ P3 that avoids the finite set Sing(V ). Then the projection of C ′ = f−1(D)
to D = H ∩ V is an isomorphism. By the Genus Formula, the quartic plane curve
D ⊂ H has invariants h0(OD) = 1 and h1(OD) = (4−1)(4−2)/2 = 3. On the other
hand, C ′ ⊂ X is linearly equivalent to C, hence has h1(OC′) = 0, contradiction. □

The normalization map g : Y → V comes with a branch curve B ⊂ V , defined as
the schematic support of g∗(OY )/OV . Its schematic preimage R = g−1(B) is called
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the ramification curve. Both are indeed equidimensional of dimension one, and
without embedded components, because Y and V are Cohen–Macaulay. Relative
Duality for the normalization map gives the formula g∗(ωY/V ) = Hom(g∗(OY ),OV ).
The latter coincides with g∗(OY (−R)), and we obtain

(14) ωY = ωY/V ⊗ f ∗(ωV ) = ωY = OY (−R).

For more details we refer to [15], Appendix A. The situation is summarized in the
commutative diagram

(15)

X

R Y

B V P3,

h

f

g

all horizontal arrows are closed embeddings. Also note that the annihilator ideal for
g∗(OY )/OV is called the conductor ideal for g : Y → V , and accordingly the lower
left part of the diagram is called the conductor square.

In our situation, the branch curve B can also be seen as a space curve in P3, which
will be crucial throughout. Recall that each space curve Z ⊂ P3 has some degree,
defined as

deg(Z) = χ(OZ(1))− χ(OZ) = deg(OZ(1)) = (OP3(1) · C) ≥ 1.

Space curves Z of degree one are called lines. They are integral, with OZ(1) globally
generated of degree one. This sheaf is then generated by two global sections, and
the resulting morphism Z → P1 of degree one is an isomorphism. One finds that the
lines are precisely the intersections of two different planes. Note that space curves Z
contained in a plane are rather special: By the Genus Formula they have invariants
h0(OZ) = 1 and h1(OZ) = (d− 1)(d− 2)/2, where d = deg(Z).

Proposition 7.2. The branch curve B ⊂ P3 has degree three. Moreover, B is
integral provided that it contains no line.

Proof. Let η ∈ B be some generic point, and set Λ = OB,η and Λ′ = f∗(OR)η.
According to [15], Proposition A.2 the lengths of these Λ-modules are related by
length(Λ′) = 2 length(Λ). In light of [27], Proposition 6 on page 299, this ensures
deg(NR) = 2 deg(N ) for every invertible sheaf N on the branch curve.

Let E1, . . . , Er be the irreducible components of the exceptional divisor Exc(X/Y ),
endowed with reduced scheme structure, and R′ ⊂ X be the strict transform of the
ramification curve R ⊂ Y . Write

KX/Y = −
∑

λiEi and f ∗(R) = R′ +
∑

µiEi

for certain λi, µi ∈ Q. Then the numerical class of ωX is given by the Q-divisor
KX/Y − f ∗(R). With L = OV (1) we compute

(ωX · C) = (KX/Y − f ∗(R)) · f ∗(L ) = −R · g∗(L ) = −2 deg(L |C) = −2 deg(B),
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using the Projection Formulas. (In the above arguments we have use Mumford’s
rational pullbacks and rational intersection numbers; for details see the discussion
in [34] and [44]). On the other hand, the Adjunction Formula gives

(ωX · C) = deg(ωC)− C2 = −2− 4 = −6.
Combining the above equations yields deg(B) = 3.

Suppose that B contains no line. Let η1, . . . , ηr ∈ B be the generic points
and B1, . . . , Br ⊂ B be the corresponding irreducible components, viewed as the
schematic closure of the canonical morphism Spec(OB,ηi)→ B. Then

3 = deg(B) =
r∑

i=1

deg(Bi) =
r∑

i=1

deg(Bi,red) · length(OBi,ηi) ≥ 2lr,

where l ≥ 1 is the smallest among the length(OBi,ηi). We see r = 1 and l = 1, hence
B is integral. □

The presence of lines is of little interest:

Proposition 7.3. Theorem 6.1 holds if the branch curve B contains a line.

Proof. Choose a line L ⊂ B, and two planes H1 ̸= H2 inside P3 containing the
line. If Hi ∩ V is reducible, the same holds for the preimage Ci = f−1(Hi ∩ C).
We thus may assume that H1 ∩ V and H2 ∩ V have the same support, namely
L. Then the preimages f−1(Hi ∩ V ) are effective Cartier divisors on some normal
scheme that are linearly equivalent and have the same support. This is only possible
if f−1(H1 ∩ V ) = f−1(H2 ∩ V ). But this contradicts the injectivity of the map
H0(P3,OP3(1))→ H0(X,L ), where L = OX(C). □

8. Twisted cubics and exotic cubics

We keep the assumptions from the preceding section, and continue work towards
the proof for Theorem 6.1. Recall that our regular surface X over the ground field
F contains an integral curve C ⊂ X with h1(OC) = 0 and C2 = 4, and maps to
non-normal quartic surface V ⊂ P3, with normalization g : Y → V , and resulting
branch curve B ⊂ V and ramification curve R ⊂ Y . We now additionally assume
that B contains no line, and that Sing(Y ) contains no point whose image on V is
rational.

These two innocuous assumptions are of profound consequence. Among other
things, they allow to compute the cohomological invariants of our schemes:

Proposition 8.1. The normal surface Y has at most rational singularities, and the
numerical invariants are h0(OY ) = 1 and h1(OY ) = h2(OY ) = 0. Moreover, the
ramification curve and the branch curve have invariants

h0(OR) = h1(OR) = 1 and h0(OB) = 1, h1(OB) = 0,

and the scheme B is integral.

Proof. First note that B is integral by Proposition 7.2. The Leray–Serre spectral
sequence for h : X → Y gives h0(OY ) = 1 and h1(OY ) = 0, together with an
identification H2(Y,OY ) = H0(Y,R1h∗(OX)). The conductor square in (15) yields a
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short exact sequence 0→ OV → OY ⊕OB → OR → 0, and we proceed by examining
its long exact sequence. It starts with

0 −→ H0(OV ) −→ H0(OY )⊕H0(OB) −→ H0(OR) −→ H1(OV ).

The term on the right vanishes, and we see h0(OB) = h0(OR). Using h1(OV ) =
h1(OY ) = 0, we get another exact sequence

0 −→ H1(OB) −→ H1(OR) −→ H2(OV ) −→ H2(OY ) −→ 0.

Suppose that the map on the right is non-zero. It is necessarily bijective, because
h0(OV ) = 1, and thus h2(OY ) = 1. In turn, the sheaf R1h∗(OX) must be supported
by a rational point y ∈ Y . The image v ∈ V of this singularity is again a rational
point, in contradiction to our standing assumption. Consequently h2(OY ) = 0 and
R1h∗(OX) = 0, such that each singular local ring OY,y is a rational singularity,
having some non-trivial field extension F ⊂ κ(y). Moreover, we see that h1(OR) =
h1(OB) + 1.

The short exact sequence 0 → OY (−R) → OY → OR → 0 gives a long exact
sequence

H0(Y,OY ) −→ H0(R,OR) −→ H1(Y,OY (−R)).

Using ωY = OY (−R) and Serre Duality, we see that the term on the right is is dual
to H1(Y,OY ), which vanishes. Thus h0(OR) = h0(OY ) = 1. Finally, we have an
exact sequence

H1(Y,OY ) −→ H1(R,OR) −→ H2(Y,OY (−R)) −→ H2(Y,OY ).

The outer terms vanish, so h1(OR) = h2(OY (−R)) = 1, again by Serre Duality. □

A useful geometric consequence:

Proposition 8.2. The resolution of singularities f : X → V factors over the
blowing-up BlB(V )→ V with respect to the space curve B ⊂ V .

Proof. According to Hartshorne [21], Chapter II, Proposition 7.14 the task is verify
that f−1(Z) ⊂ X is an effective Cartier divisor. As g−1(Z) = R, it suffices to
show that h−1(R) ⊂ X is an effective Cartier divisor. Since Y has only rational
singularities, this indeed holds, according to [42], Proposition 10.5. □

Recall that a space curve Z ⊂ P3 of degree three that is isomorphic to the pro-
jective line is called a twisted cubic. The Adjunction Formula ensures that it is not
contained in a plane. Furthermore OZ(1) ≃ OP1(3), and the map H0(P3,OP3(1))→
H0(Z,OZ(1)) is injective, hence bijective. In turn, each twisted cubic can be seen as
the third Veronese embedding of P1. Moreover, the automorphism group PGL4(F )
acts transitively on the set of twisted cubics. Note that that the classical designa-
tion “twisted” refers to the tensor power OP1(3), and has nothing to do with modern
usage in connection with twisted forms.

We also have to deal with a more outlandish type of integral space curve of degree
three, which are of arithmetic nature and depend on some cubic field extension
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F ⊂ E. Use such an extension to form the cocartesian square

Spec(E)
(1:0)−−−→ P1

Ey y
Spec(F ) −−−→ Z.

Then Z is a genus-zero curve that is non-Gorenstein. One easily checks that
Pic(Z)→ Pic(P1

E) is bijective, and that the invertible sheaf L with L |P1
E = OP1(1)

is very ample, having deg(L ) = 3 and h0(L ) = 4. This yields a closed embedding
Z ⊂ P3 of degree three, where we suppress the dependence on the cubic field exten-
sion from notation. Note that this are cones over any embedding Spec(E) ⊂ P2. For
lack of better designation, we call such space curves Z ⊂ P3 exotic cubics. Since the
Hilbert scheme of space curves of degree three and genus zero is irreducible ([33],
Theorem 4.1), one may view the exotic cubics as arithmetic degenerations of twisted
cubics.

Proposition 8.3. Let Z ⊂ P3 be an integral space curve of degree three, with in-
variants h0(OZ) = 1 and h1(OZ) = 0. Then Z is a twisted cubic or an exotic
cubic.

Proof. First note that OZ(1) is an invertible sheaf of odd degree. So if the genus-zero
curve Z is Gorenstein, it must by isomorphic to the projective line, by Proposition
1.2, and hence is a twisted cubic. Suppose now that Z fails to be Gorenstein. The
normalization Z̃ has h1(OZ̃) = 0, the pullback OZ̃(1) has degree three, and we infer

that Z̃ = P1
E for some field extension F ⊂ E whose degree divides three. Let

Z̃ ′ −−−→ Z̃y y
Z ′ −−−→ Z.

be the conductor square, and z1, . . . , zr ∈ Z be the branch points. Set

d = [E : F ] and li = [OZ̃′,zi
: E] and λi = dli − [OZ′,zi : F ].

From the short exact sequence 0→ OZ → OZ̃ × OZ′ → OZ̃′ → 0 we get

1− (d+
r∑

i=1

(dli − λi)) + d
r∑

i=1

li = 0.

This arrangement of terms produces a partition d − 1 =
∑r

i=1 λi. From r ≥ 1 and
λi ≥ 1 we infer d = 3, and the only possibilities are

r = 1, λ1 = 2 and r = 2, λ1 = λ2 = 1.

Suppose r = 2. Then OZ′,zi ⊂ OZ̃′,zi
has F -codimension λi = 1, so the subfield

Ei = E ∩OZ′,zi inside E has F -codimension at most one. From H0(Z,OZ) = F and
the exact sequence

0 −→ H0(Z,OZ) −→ H0(Z̃,OZ̃)×H0(Z ′,OZ′) −→ H0(Z̃ ′,OZ̃′)
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we infer that at least one inclusion Ei ⊂ E is strict. However, [E : F ] = 3 precludes
such subfields.

Summing up, there is a unique branch point z ∈ Z, and OZ′,z ⊂ OZ̃′,z has F -

codimension two. From h1(OZ) = 0 one immediately sees that the preimage of
z ∈ Z is a single point z̃ ∈ Z̃, and that the residue field extension κ(z) ⊂ κ(z̃)
is non-trivial. Its F -codimensions is at most two. This codimension equals the F -
dimension of κ(z)-vector space κ(z̃)/κ(z), hence d = [κ(z) : F ] divides two. Consider
the commutative diagram

0 −−−→ F −−−→ Ey y
0 −−−→ κ(z) −−−→ κ(z̃) −−−→ κ(z̃)/κ(z) −−−→ 0.

The case d = 2 yields [κ(z̃) : F ] = 4, which is also a multiple of [E : F ] = 3,
contradiction. Thus κ(z) = F , and it follows κ(z̃) = E. The canonical sur-
jection OZ̃′,z/OZ′,z → κ(z̃)/κ(z) = E/F is bijective, because both quotients are
two-dimensional F -vector spaces. By the very definition, the conductor ideal c ⊂
OZ,z is the annihilator ideal of OZ̃,z/OZ,z = OZ̃′,z/OZ′,z, which here coincides with
κ(z̃)/κ(z). Consequently OZ̃′,z = κ(z̃) = E and OZ′,z = κ(z) = F . In other words,
Z is an exotic cubic. □

Proposition 8.4. Theorem 6.1 holds provided the branch curve B is an exotic cubic.

Proof. Write v0 ∈ B for the unique singularity of the branch curve for the normal-
ization g : Y → V , which is a rational point. The strategy is to verify that the
ramification curve R = g−1(B) contains a closed point of degree three, or that all
points in g−1(v0) have degree at least five. Then Proposition 6.4 indeed gives our
assertion. To carry out this strategy we proceed as follows: The normalization takes
the form B̃ = P1

E for some cubic field extension F ⊂ E. If R is not integral, then

both maps B̃ → B ← R admit sections over the complement of the singularity
v0 ∈ B, and R indeed contains closed points of degree three.
The main task is to treat the case that R is integral. For each y ∈ R mapping

to the singularity v0 ∈ B the local ring OY,y is regular, by our standing assumption
on the map Sing(Y ) → V , and hence OR,y is Gorenstein. Moreover, the morphism
g : R→ B is flat of degree two on the complement of v0, and we infer that the whole
curve R is Gorenstein. Consider the commutative square

(16)

B̃ ←−−− R̃y y
B ←−−− R

where the vertical arrows are the normalizations, and the horizontal morphisms
have degree two. The number h1(OR̃) is bounded above by h1(OR) = 1 and is also

a multiple of h0(OB̃) = 3, which is only possible when h1(OR̃) = 0. Thus R̃ is a

genus-zero curve over some further field extension Ẽ = H0(R̃,OR̃), with E ⊂ Ẽ of
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degree either one or two. We next form the conductor square

R̃′ −−−→ R̃y y
R′ −−−→ R.

for the normalization R̃→ R. Write y1, . . . , yr ∈ R for the branch points and set

d = [Ẽ : F ] and li = [OR̃′,yi
: Ẽ] and λi = dli − [OR′,yi : F ].

The short exact sequence 0→ OR → OR̃ × OR′ → OR̃′ → 0 yields

1− (d+
r∑

i=1

(dli − λi)) + d
r∑

i=1

li − 1 = 0,

which gives a partition d = λ1+. . .+λr. We have λi = dli/2 because R is Gorenstein
([16], Proposition A.2), and thus get another partition 2 = l1 + . . . + lr. The only
possibilities are

r = 1, l1 = 2 and r = 2, l1 = l2 = 1.

Moreover d = 3 or d = 6. We now have to go through all possible cases:
Suppose first that r = 2. In other words, the normalization produces exactly two

branch points y1, y2 ∈ R, each having OR̃′,yi
= Ẽ. Inside this, OR′,yi is a subfield of

index two. We see OR′,yi = κ(yi) and the integer d is even, therefore d = 6, hence
the closed points yi ∈ Y have degree three, as desired.

Suppose now r = 1. In other words, the normalization comes with exactly one
branch point y1 ∈ R, having [OR̃′,y1

: Ẽ] = 2. So the Ẽ-algebra OR̃′,y1
is either a

quadratic field extension, or the field product Ẽ × Ẽ, or the ring of dual numbers
Ẽ[ϵ] = Ẽ⊕ϵẼ. In the first two cases, the subring OR′,y1 is a field, and thus coincides

with κ(y1). In the last two cases, the normal curve R̃ contains an Ẽ-valued point,
and is thus isomorphic to the projective line P1

Ẽ
. So for d = 3, we find in all three

cases some closed point y ∈ R of degree three.
Assume now d = 6, so the F -algebra OR̃′,y1

has degree twelve. Suppose first
that the subring OR′,y1 is a field. It thus coincides with κ(y1), necessarily with
[κ(y1) : F ] = 6, and thus every closed point y ∈ R has degree at least six, as desired.
We finally come to the most interesting case where OR̃′,y1

= Ẽ[ϵ] is the ring of dual
numbers, and that the subring OR′,y1 is not a field. It takes the form K + ϵU , for a

field of representatives K and some non-zero K-vector subspace ϵU ⊂ ϵẼ, satisfying

6 = [OR′,y1 : F ] = [K : F ](1 + dimK(U)) and dimK(U) = edim(OR′,y1).

Here edim(A) = dimκ(m/m2) denotes the embedding dimension of a local noetherian
ring (A,m, κ). By construction, [K : F ] is a strict divisor of [Ẽ : F ] = 6. If
[K : F ] = 3 the closed point y1 ∈ Y has degree three, as desired. If [K : F ] = 1
we have edim(OY,y1) ≥ edim(OR′,y1) = 5. Then y1 is a rational point in Sing(Y ), in
contradiction to our standing assumption that no such point exists.

Finally, we have to rule out the case [K : F ] = 2 and dimK(U) = 2. Then
the canonical surjection E ⊗F K → Ẽ is bijective, and we have an identification
R̃ = B̃ ⊗E Ẽ = B̃ ⊗F K. Since all closed points y ∈ R except y1 have degree at
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least six, it suffices to treat the case that g−1(v0) = {y1}, in light of Proposition 6.4.
Write ṽ0 ∈ B̃ and ỹ1 ∈ R̃ for the preimages. From (16) we obtain a commutative
diagram of cotangent spaces

mṽ0/m
2
ṽ0
−−−→ mỹ1/m

2
ỹ1

id

x x
mv0/m

2
v0
−−−→ my1/m

2
y1
.

These vector spaces and linear maps take the explicit form

ϵE −−−→ ϵ(E ⊗F K)

id

x x
ϵE −−−→ ϵU.

Choose an F -basis ϵαi ∈ ϵE, 1 ≤ i ≤ 3. Their images ϵ(αi ⊗ 1) in ϵ(E ⊗F K) stays
K-linearly independent. However, the images in the two-dimensionalK-vector space
ϵU must be K-linearly dependent, contradiction. □

9. Blowing-ups centered at twisted cubics

We keep the assumptions from the preceding section, and continue work towards
the proof for Theorem 6.1. Recall that our regular surface X over the ground field
F contains an integral curve C ⊂ X with h1(OC) = 0 and C2 = 4, and maps to
non-normal quartic surface V ⊂ P3, with normalization g : Y → V , and resulting
branch curve B ⊂ V and ramification curve R ⊂ Y . We now assume that B is a
twisted cubic, and that Sing(Y ) contains no point whose image on V is rational.
Choosing an identification B = P1 together with OB(1) = OP1(3), we see that the

inclusion of the twisted cubic is given by (x0 : x1) 7→ (x3
0 : x

2
0x1 : x0x

2
1 : x

3
1), and its

ideal a ⊂ k[t0, . . . , t3] is generated by the three homogeneous polynomials

(17) f0 = t0t4 − t1t2, and f1 = t0t3 − t21, and f2 = t1t3 − t22.

Let P ∈ k[t0, . . . , t3] be a homogeneous polynomial of degree four defining the quartic
surface V ⊂ P3. The inclusion B ⊂ V translates into P ∈ a. One actually can say
much more:

Proposition 9.1. There is a homogeneous polynomial Φ ∈ F [X0, X1, X2] of degree
two such that P = Φ(f0, f1, f2). Moreover, such Φ is irreducible.

Proof. Since B is reduced and V is singular along it, we must have P ∈ a2. Now
write P =

∑
gijdfifj for some homogeneous gijd ∈ F [t0, . . . , t3] of degree d ≥ 0. The

terms where deg(gijd)+deg(fi)+deg(fj) differs from deg(P ) = 4 cancel each other,
and discarding them we may assume that each non-zero summand d = 0. Summing
up, we have P = Φ(f0, f1, f2) for some ternary quadratic form Φ. The latter must
be irreducible, because P is irreducible. □

To proceed, we consider the blowing-up BlB(P3) → P3 with center the twisted
cubic B. The strict transform of V coincides with the blowing-up BlB(V ) → V .
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According to Proposition 8.2, the morphism f : X → V factors over BlB(V ). Let
I ⊂ OP3 be the sheaf of ideals for the twisted cubic. The surjection

H =

(
2⊕

i=0

OP3

)
⊗ OP3(−2) =

2⊕
i=0

OP3(−2) (f0,f1,f2)−→ I

stemming form (17) defines an inclusion BlB(P3) ⊂ P(H ) = P3 × P2. We thus
obtain a commutative diagram

(18)

X BlB(V )

BlB(P3)

V P3 P2 V+(Φ).

f

pr1 pr2

(f0:f1:f2)

Indeed, the rational map P3 99K P2 is defined outside B, and sends V ∖ B to
the quadric curve V+(Φ). Using that V ∖ B is schematically dense in BlB(V ), we
immediately see that the induced projection pr2 : BlB(V )→ P2 factors over V+(Φ),
giving the diagonal arrow to the right.

According to Ray’s result ([39], Corollary 3.6) the projection BlZ(P3) → P2 is
isomorphic to the projectivization P(E ), with the locally free sheaf of rank two
sitting in a short exact sequence

(19) 0 −→ O⊕2
P2 (−1) −→ O⊕4

P2 −→ E −→ 0.

Moreover, it follows from loc. cit. Theorem 3.4 that

(20) pr∗2(OP2(1)) ≃ pr∗1(OP3(1))⊗ OBlB(P3)(−E),

where E = pr−1
1 (B) is the exceptional divisors. Note that Ray worked over the

complex numbers, but his arguments literally hold true over arbitrary ground fields.
In light of the commutative diagram (18), the morphism X → BlB(P3) = P(E )
factors over P(E | V+(Φ)).

Theorem 9.2. In the above situation, the following holds:

(i) The integral quadric curve V+(Φ) ⊂ P2 is regular.
(ii) The rank-two locally free sheaf E |V+(Φ) has degree four.
(iii) The morphism X → P(E |V+(Φ)) is an isomorphism.
(iv) The curve C ⊂ X is a section for the projection X → V+(Φ).

Proof. The projection X → V+(Φ) is surjective, because the fibers for the bundle
pr2 : BlB(P3) → P2 are one-dimensional. The projection thus factors over the
normalization of V+(Φ). This involves a constant field extension if V+(Φ) is non-
normal, in contradiction to H0(X,OX) = F . From the exact sequence (19) we get
det(E ) = OP2(2). Since V+(Φ) ⊂ P2 has degree two, the restriction E | V+(Φ) has
degree four. This establishes (i) and (ii).
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The morphism X → P(E |V+(Φ)) is surjective, because OX(C) = f ∗(OP3(1)) and
C2 > 0. The scheme P(E | V+(Φ)) is regular because the base V+(Φ) is regular, and
(iii) follows from the minimality of our surface X.

It remains to establish (iv), which is the most interesting part. Our task is to verify
that the intersection number (pr∗2(OP2(1)) · C) coincides with (OP2(1) · V+(Φ)) = 2.
To achieve this we compute separately with the factors appearing in (20): The first
factor contributes (pr∗1(OP3(2)) · C) = 2 · C2 = 8. The second factor is the negative
of

(OBlB(P3)(E) · C) = h0(OC∩E) = h0(OC∩X∩E) = deg(OP3(1) | R).

But deg(OP3(1) | R) = deg(R/B) · deg(B) = 2 · 3 = 6, which gives the desired
(pr∗2(OP2(1)) · C) = 8− 6 = 2. □

In particular, X comes with a fibration such that the base and the generic fiber
are genus-zero curves. As discussed in Section 11, this actually finalizes the proof
for our generalization of Iskoviskih’s result in Theorem 3.1. To complete the proof
for the bend-and-break statement in Theorem 6.1, it remains to understand the
geometry of ruled surfaces over a regular genus-zero curve, which boils down to an
analysis of locally free sheaves of rank two on on such curves. We shall carry this
out in the next section.

10. Locally free sheaves on genus-zero curves

We now make a digression and study locally free sheaves on regular genus-zero
curves. Recall that by Grothendieck’s Splitting Theorem, every vector bundle over
the Riemann sphere is a sum of line bundles ([17], Theorem 2.1). This carries over to
the projective line over any ground field (as in [36], Theorem 2.1.1 or [22], Theorem
4.1). One may rephrase the result by saying that the indecomposable locally free
sheaves are exactly the invertible sheaves. The situation for elliptic curves over
algebraically closed fields is already much more complicated, and was solved by
Atiyah [2]. The indecomposable sheaves over twisted lines where determined by
Biswas and Nagaray [9], Theorem 4.1 and Novaković [35], Corollary 6.1, using Galois
descent.

Fix a ground field F of characteristic p ≥ 0. Let D be a regular genus-zero curve
whose Picard group is generated by the dualizing sheaf, that is, a twisted line or
a twisted ribbon. The dualizing sheaf ωD is invertible of degree d = −2, hence
χ(ω⊗t

D ) = −2t+ 1. Moreover,

(21) h1(ω⊗t
D ) = h0(ω⊗1−t

D ) = 0 and h0(ω⊗t
D ) = −2t+ 1 ≥ 1

provided t ≤ 0 holds. The vector space Ext1(OD, ωD) = H1(C, ωD) is 1-dimensional,
and the resulting non-split extension

(22) 0 −→ ωD −→ FD −→ OD −→ 0

defines a locally free sheaf FD of rank two with det(FD) = ωD. Up to isomorphism,
it does not depend on the choice of the extension, and is canonically attached to the
curve D. We remark in passing that this construction works on every Gorenstein
curve without constant field extension. As we shall see, it plays a particularly
important role for genus-zero curves.
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Note that in the long exact sequence for (22), the connecting map H0(D,OD)→
H1(D,ωD) is non-zero, because the extension is non-split, hence it is bijective, and
thus h0(FD) = h1(FD) = 0.

Proposition 10.1. The sheaf FD is indecomposable, with χ(FD ⊗ ω⊗t
D ) = −4t.

Moreover,
h1(FD ⊗ ω⊗t

D ) = 0 and h0(FD ⊗ ω⊗t
D ) = −4t ≥ 4

provided t ≤ −1 holds.

Proof. Suppose the sheaf is decomposable, and write FD = ω⊗m−2
D ⊕ω⊗−m

D for some
integer m. From h0(FD) = 0 we see m− 2,−m > 0, which gives the contradiction
0 > m > 2. Thus FD is indecomposable. Recall that for locally free sheaves Ei of
rank ri and degree di we have

(23) deg(E1 ⊗ E2) = r2d1 + r1d2 and χ(Ei) = di + ri,

the latter by Riemann–Roch, and the formula for χ(FD ⊗ ω⊗t
D ) follows. Suppose

now t ≤ −1. Then the group H1(D,ω⊗t+1
D ) vanishes. So tensoring (22) with ω⊗t

D

yields an exact sequence

0 −→ H0(D,ω⊗t+1
D ) −→ H0(D,FD ⊗ ω⊗t

D ) −→ H0(D,ω⊗t
D ) −→ 0,

and the formula for h0(FD ⊗ ω⊗t
D ) results from (21). Furthermore, we get an iden-

tification H1(D,FD ⊗ ω⊗t
D ) = H1(D,ω⊗t

D ), which indeed vanishes. □

Note that the wedge product FD ⊗FD → det(FD) defines identifications

FD = F∨
D ⊗ ωD and F∨

D = FD ⊗ ω⊗−1
D ,

which is a special case of the following general result:

Theorem 10.2. Up to isomorphism, the indecomposable locally free sheaves on D
are the ω⊗a

D and FD ⊗ ω⊗b
D , with exponents a, b ∈ Z.

Proof. We have to show that each locally free sheaf E of finite rank decomposes into
a sum where each summand has the form ω⊗a

D or F ⊗ ω⊗b
D , with various exponents

a and b. We proceed by induction on the rank r ≥ 0. The cases r = 0 is trivial.
Suppose now r ≥ 1, and that the assertion holds for r−1. Replacing E by a suitable
E ⊗ ω⊗t

D , we may assume that h0(E ) ̸= 0 but h0(E ⊗ ωD) = 0. If follows that there
is a non-zero s : OD → E , and the resulting cokernel E ′ must be locally free. We
thus can view E as an extension

(24) 0 −→ OD −→ E −→ E ′ −→ 0.

By the induction hypothesis, E ′ is isomorphic to some

F (a1, . . . , am | b1, . . . , bn) =

(
m⊕
i=1

ω⊗ai
D

)
×

(
n⊕

j=1

FD ⊗ ω
⊗bj
D

)
.

Tensoring the short exact sequence (24) with ωD, we obtain an exact sequence

H0(D,E ⊗ ωD) −→ H0(D,F (a1 + 1, . . . | b1 + 1, . . .)) −→ H1(D,ωD).

The term on the left vanishes, the term on the right is one-dimensional, so the term
in the middle is at most one-dimensional. Using Proposition 10.1, we infer that
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b1+1, . . . , bn+1 ≥ 0. Arguing in a similar way with (21), we see that ai+1 ≥ 1 for
all 1 ≤ i ≤ m, with one possible exception i = s, which than must have as + 1 = 0.
Summing up, we may assume that

b1, . . . , bn, a1 ≥ −1 and a2, . . . , am ≥ 0.

For all exponents t ≥ 0 and s ≥ −1 the extension groups
(25)
Ext1(ω⊗t

D ,OD) = H1(D,ω⊗−t
D ) and Ext1(FD ⊗ ω⊗s,OD) = H1(FD ⊗ ω⊗−1−s

D )

vanishes. Consequently, (24) splits provided a1 ≥ 0 holds, and E decomposes as
desired.

It remains to treat the case a1 = −1. The pullback E0 = E ×E ′ ω⊗a1
D of (24) with

respect to the inclusion map ω⊗a1
D ⊂ E ′ sits in a short exact sequence

(26) 0 −→ OD −→ E0 −→ ω⊗−1
D −→ 0.

Each such extension is either isomorphic to F∨
D or OD ⊕ ω⊗−1

D , because the vector
space Ext1(ω⊗−1

D ,OD) = H1(D,ωD) is one-dimensional. Using the Snake Lemma,
we see that our sheaves form a short exact sequence

(27) 0 −→ E0 −→ E −→ E ′′ −→ 0,

now with E ′′ = F (a2, . . . , am | b1, . . . , bn). The short exact sequence (26) yields an
exact sequence

Ext1(E ′′,OD) −→ Ext1(E ′′,E0) −→ Ext1(E ′′, ω⊗−1
D ).

The outer terms vanish, as one sees by using (25) again. In turn, the extension (24)
splits, and E decomposes as desired. □

Proposition 10.3. The indecomposable sheaves that are globally generated are pre-
cisely the ω⊗a

D with a ≤ 0, and FD ⊗ ω⊗b
D with b ≤ −1. In any case, we have

deg(ω⊗a
D ) = −2a and deg(FD ⊗ ω⊗b

D ) = −4b− 2.

Proof. The degrees immediately follow from (23). Clearly, ω⊗a
D is globally generated

if and only if a ≤ 0. If b ≤ −1, the outer terms in the short exact sequence
0 → ω⊗b+1

D → FD ⊗ ω⊗b
D → ω⊗b

D → 0 are globally generated, and H1(D,ω⊗b+1
D )

vanishes, hence the term in the middle is globally generated. Conversely, if FD⊗ω⊗b
D

is globally generated, so is the quotient ω⊗b
D , and hence b ≤ 0. The case b = 0 is

impossible, since we already observed that h0(FD) = 0. □

For each locally free sheaf E of rank two onD yields the regular surfaceX = P(E ).
Each section is of the form C = P(ω⊗a

D ), for some short exact sequence

(28) 0 −→ ω⊗a′

D −→ E −→ ω⊗a
D −→ 0.

The self-intersection is C2 = deg(ω⊗a
D ) − deg(ω⊗a′

D ) = −2(a − a′), as explained in
[16], Lemma 6.1.

Proposition 10.4. Notation as above. If E is indecomposable, the selfintersection
satisfies C2 ≡ 2 modulo 4. If E is decomposable and C2 > 0, then C ⊂ X is linearly
equivalent to a curve C ′ that is reducible.
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Proof. Suppose E = FD ⊗ ω⊗b
D for some integer b. Taking degrees for (28) we get

2 ≡ −4b− 2 = deg(E ) = −2a− 2a′ ≡ −2(a− a′) = C2 modulo 4,

which gives the first assertion. If E is decomposable we have E = ω⊗r
D ⊕ ω⊗r′

D with
r + r′ = a + a′. Without loss of generality r′ ≤ r. Then the section R = P(ω⊗r

D )
has R2 = −2(r − r′) ≤ 0. Let F ⊂ X be the fiber over a closed point b ∈ B of
degree two. Then C is numerically equivalent to R+mF for some integer m. From
0 ≤ (C · R) = R2 +m(F · R) = R2 + 2m we get m ≥ −R2/2 ≥ 0. The case m = 0
is impossible, because C2 > 0 and R2 ≤ 0, thus R +mF is a reducible curve. It is
linearly equivalent to C, because Picτ (X) = 0. □

We close this section with some further observations on sheaves over such D. If D
is a twisted line, we have D ⊗K ≃ P1

E for some separable quadratic field extension
F ⊂ K, with

ωD | P1
K = OP1

K
(−2) and FD | P1

K = OP1
K
(−1)⊕ OP1

K
(−1).

If D is a twisted ribbon, we are in characteristic p = 2, and (D ⊗ E)red = P1
E for

some height-one extension F ⊂ E of degree four. Note that the projection P1
E → B

again has degree two, but now

ωD | P1
E = OP1

E
(−1) and FD | P1

E = OP1
E
(−1)⊕ OP1

E
.

Also note that the sheaf of Kähler differentials Ω1
D/k is locally free of rank two. It

turns out to be decomposable:

Proposition 10.5. In the above situation, we have Ω1
D/k ≃ ω⊗2

D ⊕ ωD.

Proof. The sheaf ω⊗−1
D is very ample and embeds D into P2 as a curve of degree two.

The canonical surjection Ω1
P2/F |B → Ω1

D/F of locally free sheaves of rank two must be

bijective. Restricting the Euler sequence 0 → Ω1
P2/F →

⊕2
i=0 OP2(−1) → OP2 → 0

to D yields a short exact sequence

0 −→ Ω1
D/F −→ ω⊕3

D −→ OD −→ 0.

This shows deg(Ω1
D/F ) = −6 and Hom(Ω1

D/F , ωD) ̸= 0. In light of Theorem 10.2,

the only possibilities for Ω1
D/F are FD ⊗ ωD and ω⊗2

D ⊕ ωD. Note that both have

h0 = 0 and h1 = 4, so the numerical invariants do not tell them apart.
Choose a field extension F ⊂ E such that the base-change D ⊗ E becomes the

split ribbon

P1
E ⊕ OP1

E
(−1) = SpecE[u, ϵ] ∪ SpecE[u−1, ϵu−1],

where ϵ2 = 0. Over these affine open sets, the differentials e1 = du, e2 = dϵ and
e′1 = du−1, e′2 = dϵu−1 form a basis for Ω1

D/F ⊗ E, and the resulting cocycle takes
the form (

u−2 ϵu−2

0 u−1

)
∈ GL2(E[u±1, ϵ]),

as explained in [41], Section 2. With the new basis e′1, e
′
2 + ϵe′1 we get

e′1 = u−2e1 and e′2 + ϵe′1 = u−1e2,
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and infer that the sheaf Ω1
D/F and ω⊗2

D ⊕ ωD become isomorphic after base-change
to E. In turn, they are already isomorphic over F . □

Let us finally point out that the classification of locally free sheaves on the split
ribbon D ⊗ E = P1

E ⊕ OP1
E
(−1) is much more complicated. This can already seen

on a base-change D ⊗ K that is a denormalization of P1
E, obtained by replacing

an E-valued point x ∈ P1
E by a K-valued point. To give a locally free sheaf on

this denormalization amounts to give a sheaf F = OP1
E
(a1)⊕ . . .⊕ OP1

E
(ar) on P1

E,

together with an K-rational structure on the E-vector space V = F (a), that is,
an K-subspace V0 such that the canonical map V0 ⊗K E → V is bijective. This
apparently involves continuous families. It would be interesting to work this out.

11. Proofs for main results

Recall that X denotes a minimal regular proper surface over a ground field F
with invariants h0(OX) = 1 and h1(OX) = h0(ω⊗2

X ) = 0. We now collect our findings
and give the proofs for two main results of this paper.

Proof for Theorem 6.1. Here we have an integral curve C ⊂ X with h1(OC) = 0
and C2 = 4, and the task is to find a linearly equivalent curve C ′ that is not integral.
For this we have introduced in Section 6 a finite morphism f : X → P3. Several easy
situations where already treated in Proposition 6.4, and it remains to handle the
case that the image V = f(X) is an integral quartic surface, which is non-normal
by Proposition 7.1. We write g : Y → V for the normalization, and only have to
deal with the case that no singular point y ∈ Y maps to a rational point v ∈ V ,
again by Proposition 6.4.

In light of Proposition 7.2 and Proposition 8.4, it remains to treat the case that the
branch curve B ⊂ V for the normalization is a twisted cubic. We then established
in Theorem 9.2 that X arises as blowing-up of the quartic surface V with center
the twisted cubic B. From this we inferred that X = P(E ) for some locally free
sheaf E of rank two over a regular genus-zero curve D, having C as a section. For
D = P1 the sheaf E is decomposable, and we find a reducible C ′ as in the proof
for Proposition 10.4. The interesting case is when ωD generates the Picard group.
Recall that C2 = 4. By Proposition 10.4, the sheaf E must be decomposable, and
C is linearly equivalent to a reducible curve. □

Proof for Theorem 3.1. The task is to show that X is isomorphic to a plane
or a quadric surface in P3, or there is a fibration f : X → B with OB = f∗(OX)
where the base and the generic fiber are genus-zero curves, or the dualizing sheaf ωX

generates the Picard group Pic(X). Suppose the dualizing sheaf does not generate.
According to Proposition 3.4 there is an integral curve C ⊂ X with h1(OC) = 0
and C2 ≥ 0, such that every linearly equivalent curve C ′ is integral. In light of
Proposition 3.6 and Proposition 4.2 it remains to treat the case where C2 ≥ 3 and
C2 | 4, in other words C2 = 4. But then Theorem 6.1 tells us that some C ′ is
non-integral, contradiction. □
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